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LETTER TO THE EDITOR 

Close packing in curved space by simulated annealing 

L T Willet 
SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK 

Received 24 August 1987 

Abstract. The problem of packing spheres of a maximum radius on the surface of a 
four-dimensional hypersphere is considered. It is shown how near-optimal solutions can 
be obtained by packing soft spheres, modelled as classical particles interacting under an 
inverse power potential, followed by a subsequent hardening of the interaction. In order 
to avoid trapping in  high-lying local minima, the simulated annealing method is used to 
optimise the soft-sphere packing. Several improvements over other work (based on local 
optimisation of random initial configurations of hard spheres) have been found. The 
freezing behaviour of this system is discussed as a function of particle number, softness 
of the poten!ial and cooling rate. Apart from their geometric interest, these results are 
useful in the study of topological frustration, metallic glasses and quasicrystals. 

Densely packed arrangements of hard spheres in the three-dimensional Euclidean 
space E 3  have been investigated for a long time, since they provide the necessary 
building blocks for a description of solids and liquids. However, the subject is also 
of independent mathematical interest and (in higher dimensions) has important applica- 
tions in the design of efficient codes for data transfer (Sloane 1984). The same problem 
in the spherical space S 2  consists in finding the closest packing of N circles on the 
surface of a sphere and is relevant to coordination problems in stereochemistry. Only 
for certain specific cases, usually corresponding to small N values, are rigorous 
geometric proofs available to show that particular configurations are optimal. In 
general, one has to proceed numerically and there will be no guarantee that the resulting 
structures are the best possible. Lists of solutions have been tabulated by Melnyk er 
a1 (1977) and more recently by Clare and Kepert (1986). Going one dimension higher, 
tesselations of the four-dimensional hypersphere S 3  have been proposed by Sadoc and 
co-workers as generic models for amorphous structures (see the review by 
Venkataraman and Sahoo (1985)). Computer results for packings in S3 have been 
given by Mackay (1980). The central structure in S 3  is the regular polytope { 3 , 3 , 5 }  
which has 120 vertices, all in an ideal icosahedral environment. Unlike the icosahedron 
in ,E3 this system has no topological frustration and therefore S 3  can be tesselated 
perfectly with tetrahedra. This property has been used to study the effects of frustration 
on the freezing temperature for soft spheres (Straiey 1984, 1986). The present letter 
uses computer simulations of freezing to obtain efficient packings in S 3 .  

The determination of the ground-state configuration of a system of N interacting 
particles is a difficult problem, mainly because of the presence of a large number of 
local minima. It has been argued (Wille and Vennik 1985a) that this problem is 
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Np-hard, a property which it shares with such difficult optimisation problems as graph 
bipartitioning (Fu and Anderson 1986), spin glasses (Bachas 1984), etc. The same is 
true for the packing of hard objects in two dimensions which remains Np-hard even 
under very restrictive conditions (Fowler et a1 1981). An additional difficulty of packing 
hard spheres is that, in general, the optimal configuration will be non-rigid and might 
contain holes that are large enough to allow spheres to ‘rattle’. This means that it may 
be difficult to decide if a particular structure cannot be further improved by constraining 
these free spheres. The standard method for obtaining packings starts from a random 
initial configuration in which points are moved away from each other until the minimum 
angular distance cannot be improved. The corrections to a given configuration are 
obtained by solving a set of non-linear equations for the coordinates, based on an  
estimate for the optimal distance (Mackay (1980), Clare and Kepert (1986): the latter 
authors use a preliminary soft-sphere optimisation to generate a starting structure). 
This procedure requires a good deal of manual intervention in adjusting the target 
distance and moreover can easily get trapped in local minima that are bad approxima- 
tions to the global one. 

It has become clear in recent years that a very efficient way of obtaining near-optimal 
solutions for difficult optimisation problems is provided by the simulated annealing 
method (Kirkpatrick ef a1 1983). This technique is based on the observation that, 
when a liquid is slowly cooled, it ends up in a configuration that has very few 
(energetically unfavourable) defects. Hence its energy is close to that of the ideal 
perfectly crystalline solid. The reason for this is that fluctuations at finite temperature 
allow the atoms to surmount potential energy barriers and thus to escape from local 
minima. I f  the cooling were to proceed infinitely slowly the system would end up  in 
the true ground state, but in practice one finds an  energy distribution whose position 
and width depend on the cooling rate. This behaviour can be studied by the techniques 
of statistical mechanics and also in computer simulations. In the Metropolis prescrip- 
tion of the Monte Carlo method, a small random displacement Ar is attempted for 
each atom in turn and the change in energy AE is calculated. The atom is put in its 
new position if exp( -AE/T)  is larger than a randomly selected number from the 
interval [0, 13, otherwise the system is left unchanged. In either case the procedure is 
repeated for the next atom. It is known that for a sufficiently large number of moves 
this gives a proper description of the system in equilibrium at temperature T. By slowly 
reducing the temperature and re-equilibrating one would obtain a chain of configur- 
ations whose energies converge to the true ground state. In reality relaxation times 
become very long at low temperatures, equilibrium cannot be maintained during the 
simulation and therefore only an approximate solution will be obtained. The important 
contribution of Kirkpatrick et al (1983) was that they realised that this procedure can 
readily be applied to discrete optimisation problems by replacing the energy with an  
appropriate cost function and by considering the temperature as a control parameter. 
Algorithms based on the simulated annealing technique have been very successful in 
providing good approximate solutions to a large variety of discrete and continuous 
optimisation problems (for an overview see Wille (1986a)-an informal publication 
obtainable from W Smith at Daresbury). 

The hard-sphere packing problem involves the maximisation of the minimum 
distance between points and  has a remarkable potential energy surface (or, more 
accurately, ‘cost function surface’). Moving a sphere that is sitting in a hole, i.e. one 
that has no  neighbours on the minimal distance 0, involves no  change in energy. On 
the other hand, for truly hard spheres, moves that decrease D would cost an  infinite 
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amount of energy. Clearly it would be useful to have soft spheres during the simulation. 
This can be done by considering a system of N particles interacting under a repulsive 
power law potential 

V (  r i j )  = ( rc ) -“  

where r,, is the Euclidean distance. The hard-sphere limit is obtained when n +a 
(with an appropriate distance scaling factor). However, in general the optimal packing 
of soft spheres will not correspond to that for hard spheres, nor is there any guarantee 
that a ‘hardening’ of the soft-sphere optimum will lead to the hard-sphere optimum. 
Some investigations of this point in the three-dimensional case were done by Melnyk 
et al (1977). These authors found that (for 2 s N s 16) the configuration with n = 100 
agreed with that for n +CO, except in the case N = 15 when a crossover seems to occur 
when n = 2000. Likewise, Clare and Kepert (1986) used a soft-sphere interaction (but 
no annealing procedure) with n = 5000-10 000 to generate input configurations for the 
hardening routine. Introducing a power law potential is a form of ‘energy surface 
sculpting’, i.e. the hard-sphere potential energy surface is transformed into a smoother 
surface with an ‘undulating’ energy landscape. This has the advantage that low-lying 
minima become more easily accessible, but the disadvantage of introducing additional 
minima and displacing others. The proper choice of the power law poses a dilemma: 
if n is too small the deformation of the hard-sphere surface is too extensive and the 
soft-sphere minima do not lead to good hard-sphere minima. On the other hand, if n 
is too large, relaxation times become very long and the annealing algorithm converges 
very slowly. The best choice can only be found by trial and error and will also depend 
on the number of particles. This is coniirmed by the results of actual simulations as 
will now be discussed. 

The calculations followed the pattern set out in previous communications ( Wille 
and Vennik 1985b, Wille 1986b, 1987). The simulation was started at a high enough 
initial temperature so that the system could be considered as molten. For each particle 
in turn a random displacement was attempted according to the Metropolis algorithm. 
This procedure was repeated a number of times at a fixed temperature (typically 1000 
iterations were performed, unless stated otherwise), after which the temperature was 
reduced by a factor xT = 0.9. This cooling schedule was repeated until the system was 
frozen in a (local) minimum; subsequently, the local optimisation was accomplished 
by means of a steepest descent routine. This then provided low-lying local minima of 
the soft-sphere potential. Next a ‘hardening’ of the potential was realised by using a 
steepest descent optimiser to maximise the minimum distance between particles. This 
optimiser used function values only and its convergence was, of course, slower than 
the other routine based on analytical gradient information. Nevertheless, this method 
gave adequate results if the desired accuracy was not too high and it may have some 
advantages over the matrix equation approach used in previous work (Mackay 1980, 
Clare and Kepert 1986). 

A list of minima obtained in this way is presented in table 1. For comparison, 
Mackay’s results (Mackay 1980) are also given and the n value for which the minimum 
was attained is tabulated. The results for N = 3-8 are known to be optimal; that for 
N = 24 is believed to be so. In general, the values found by the present approach are 
better than those of Mackay (1980). There are however a number of cases in which 
the latter’s packings are superior. The small discrepancy for N = 12 is probably due 
to a loss of accuracy in the hardening routine and leads to an estimate of -0.005 for 
the error in the present results. In  the other cases N = 14, 16, 18 the convergence of 
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Table 1. Packing of points on a four-dimensional hypersphere. Closed packing of N hard 
spheres of maximum radius on a four-dimensional hypersphere found in the present letter. 
D i s  the angular distance ( in  degrees), n is the power used in the soft-sphere simulation, 
D' is the result of Mackay ( l980) ,  'opt' means that a result is known to be optimal. 

N D n D' D - D '  

3 120 40 120 opt 
4 109.47 40 109.47 opt 
5 104.48 40 104.48 0 Pt 
6 90 40 90 opt 
7 90 40 90 opt 
8 90 40 90 opt 
9 80.662 40 80.64 0.022 

I O  80.406 40 80.406 0 
1 1  76.678 60 76.669 0.009 
12 75.519 100 75.522 -0.003 
13 7 1.978 100 7 1.98 0 
14 7 1.247 100 7 1.440 -0.193 
15 69.436 100 69.227 0.209 
16 67.076 120 67.191 -0.115 
17 65.584 70 65.196 0.388 
18 64.9 16 120 64.939 -0.023 
19 64.258 60 64.117 0.141 
20 64.254 60 64.070 0.184 
24 60 40 60 0 
25 57.254 80 55.58 1.674 

the annealing scheme was slower than for the other particle numbers; this is partly 
reflected in the higher n values for N = 16 and 18. This indicates that for these N 
values the system has a relatively high degree of frustration, leading to glassy relaxation 
behaviour. It is not clear if the fact that these numbers are even contributes to this 
phenomenon (note that N = 12 also fits this pattern). The actual structures correspond- 
ing to these packings will be described elsewhere and the remainder of this letter will 
be devoted to a discussion of the freezing behaviour of these curved space systems. 

The Monte Carlo algorithm generates a Markov chain of states, whose macroscopic 
parameters fluctuate around their average value according to a Boltzmann distribution 
at each temperature T. An important quantity is the average energy ( E (  T ) ) ,  obtained 
by taking the average over all configurations generated at a given temperature and 
where fhe  previous configuration is counted again if an attempted step is rejected. The 
derivative of ( E )  with respect to T is the specific heat C ( T ) ,  which is a measure of 
the state of order in the system. A large value of C indicates the onset of freezing, 
i.e. the system getting trapped in a minimum. It is not necessary to take a numerical 
derivative of the energy to obtain C( T ) ,  in view of the fluctuation-dissipation theorem: 

C ( T ) =  T - 2 ( ( E 2 ) - ( E ) 2 ) .  

As mentioned before, relaxation times becomes very long near the phase transition 
and equilibrium cannot be maintained in the simulation. This means that it is not 
certain that the global minimum will be found, but rather a distribution of minima 
will be obtained, whose mean value should converge towards the energy of the global 
minimum as the cooling rate is decreased. This can be accomplished in the simulation 
by increasing the number of attempted steps and/or  the cooling factor xT (although 
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the latter was kept fixed in the present work). A further consequence of the critical 
slowing down near the transition is that the freezing temperature Tf is hard to locate 
exactly. In general the system will behave like an undercooled liquid and the freezing 
temperature will be underestimated (see Wille 1987). Bearing these considerations in 
mind the thermodynamic properties of a slowly annealed inverse power law system 
in curved space will now be discussed. 

Figure 1 shows the freezing temperature, determined by the major peak in the 
specific heat, as a function of particle number N. These results were obtained for 
n = 80 and a fixed cooling scheme of 1000 attempted steps for each particle and xT = 0.9. 
It should be noted that each data point corresponds to a single simulation and that 
Tf  varies slightly in different runs. No averaging over several calculations was perfor- 
med, since the main purpose was to investigate the general trends. The curve shows 
the expected increase in Tf with increasing particle number, in agreement with simula- 
tions of Lennard-Jones particles in three dimensions (Briant and Burton 1975, Kaelberer 
and Etters 1977). The curve also seems to saturate towards a ‘bulk’ freezing temperature, 
but this should not be taken too literally since the temperature grid in this region was 
rather coarse, and the ‘bulk’ freezing temperature should only be expected at much 
larger particle numbers. Finally it needs to be re-emphasised that the Tf  are the freezing 
temperatures for an undercooled system. The actual freezing temperatures can be 
obtained by much slower cooling rates (= lo6  attempted steps or more) and may be 
higher by 40% (an estimate based on the results of Kaelberer and Etters (1977)) .  Next, 
figure 2 shows the effect of different power laws on Tf. These simulations were for a 
nine-particle system, the other parameters being the same as before. These results are 
shown in a semi-logarithmic plot in view of the scaling property of the inverse power 
law potential (Hoover et a1 1971): the detailed dynamic evolution with identical scaled 
initial conditions and with the same value of T3”’/ v, where v is the available volume 
per particle, are identical. Thus one expects ( Tf)”” to be a constant in a Monte Carlo 
simulation if the same random numbers and scaled initial conditions and step lengths 
are used. If, on the other hand, the parameters in the simulation are fixed and n is 
increased, the probability of overcoming energy barriers decreases and relaxation times 
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Figure 1. Freezing temperature (determined by the major peak in the specific heat) as a 
function of particle number. Interparticle potential of the form r -* ( ’ ,  1000 attempted steps 
per particle at each temperature, cooling factor ,yr = 0.9. The curve is drawn to guide the 
eye. 
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increase accordingly. Therefore the Tf of the undercooled system should deviate more 
and more from a straight line log( Tf) cc n, as n is increased, in agreement with figure 2. 

It is clear that the role of the cooling rate is central to the simulated annealing 
idea, If cooling is too fast local minima with a much higher energy than the global 
one will be found. The extreme limit of this case consists in the quenching of random 
initial configurations. Since the number of minima is believed to grow exponentially 
with the particle number this approach will fail for all but the smallest systems. On 
the other hand, a very slow cooling rate is very time consuming and gives no guarantee 
of actually finding the global minimum. This point has been investigated in Monte 
Carlo simulations by Grest er a1 (1986) for a (discrete) spin-glass model. These authors 
find that E ( T ) ,  the difference between the ground-state energy and the average value, 
at a given inverse cooling rate T,  obeys an empirical (asymptotic) law: 

E (  7)  a (log T ) - ' .  

& ( r ) a ( l o g  T ) - ~  

where C is a system-dependent parameter. Both of these relations were obtained for 
the case of a linear cooling scheme, i.e. T was replaced by T -  AT, whereas the present 
letter uses a logarithmic cooling scheme ( T +  ,yrT). However, this distinction should 
be irrelevant in the asymptotic regime. Figure 3 shows the effect of changes in the 
number of iterations (7)  on the resulting energy for a nine-particle system ( n  = 12, 
xr  = 0.9). In figure 3 ( a )  the results of five runs are shown, whereas figure 3 ( b )  depicts 
the average value of these runs as a function of l/log(T). Note that the potential 
energy of the system is plotted, although the purpose of the present work was to 
generate close packings. For a small nine-particle system, however, all minimum 
distances were quite close, so that the energy gives a much better indication of the 
quality of the optimisation. Again it is not the intention to provide reliable statistics, 
but rather to analyse general trends. Figure 3 ( b )  shows the expected decrease in 
average energy with increasing number of attempted steps. The uncertainty in the data 
does not rule out a l/log(T) behaviour, although a slightly faster convergence appears 

On the other hand, Huse and Fisher (1986) find on very general grounds 
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Figurs3. ( a )  Final energies for five runs of a nine-particle system as a function of T (the 
number of attempted steps per particle); interparticle potential r-". ( b )  Aberage energy 
of the previous results is compatible with a dependence (E)%(log  T)-<. 

to be the case. Figure 3( a )  reveals the distribution of the minima around the averages 
of figure 3( b ) .  It is interesting to note that the highest minimum is obtained for 1000 
iterations and the lowest one for 2500 iterations, although the average values are 
monotonically decreasing. This illustrates clearly the difficulty of deciding on an  
appropriate cooling rate. From these results one may conclude that the value of 1000 
attempted steps used in the other calculations gives a proper balance between the 
energy distribution and optimal use of computer resources. 

In summary, the simulated annealing algorithm has been used to optimise the 
potential energy of a system of soft spheres distributed on the surface of a four- 
dimensional hypersphere. The resulting configuration has been 'hardened' to obtain 
efficient close packings on this surface. This method seems to be superior to previous 
algorithms based on local optimisation only and  its relative efficiency is expected to 
increase with increasing particle number. The freezing of the soft-sphere system, which 
is interesting in its own right, has been discussed and  the influence of the cooling rate 
has been investigated. It is concluded that the simulated annealing algorithm gives 
low-lying minima, but that the determination of the actual ground state with a large 
probability would necessitate impractical cooling rates. Moreover, the present problem 
is additionally complicated by the need for soft spheres characterised by an  inverse 
power law r-" in the simulation. If the power n is low so that energy barriers can be 
overcome relatively easily, the resulting minima bear little relation to the hard-sphere 
minima; alternatively if n is larger the barrier heights increase and with them the 
relaxation times. 

I should like to thank Dr Alan Mackay for bringing this problem to my attention and  
for many useful discussions. 
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